312 | 16 | 4 |
下载次数 | 被引频次 | 阅读次数 |
煤炭绿色智能安全开采和“双碳目标”发展战略的实现亟需解决煤矿地质灾害隐患透明化探测和地质安全保障这一重大技术难题。受地质探测理论、技术与装备发展水平的限制,煤矿地质灾害隐患透明化地质保障技术支撑能力还相对滞后,探测技术与装备智能化、精准化、时效性、共享性还无法满足绿色智能安全开采需求。20世纪90年代至今,煤矿地面高分辨三维地震勘探等技术不断发展,大幅度提高了精确描述煤矿复杂地质构造、预测煤矿灾害隐患的准确性(精度可达3 m),但其成果仅可部分满足煤矿开采对地质信息需求,更一步高精度的探测则需要通过煤矿井下物探来解决。此外,基于地面勘探和钻探成果所建立起的煤矿三维地质模型,并不是真正意义上的透明工作面,难以满足煤矿智能开采远程无人化操控对精细化乃至精准化的需求。实现煤矿地质灾害隐患透明化的目标,笔者提出在以下4个方面重点攻关:(1)聚焦矿井地质灾害源多地球物理场综合响应机制,研发煤矿地面勘探和井下探测技术和装备,研究矿井地质灾害源多物理场智能识别和动态反演技术,实现全要素地质灾害源识别精度;(2)研发矿井地质灾害隐患多场精细监测技术与装备,实现矿井地质灾害要素的透明化实时解析与适时反馈;(3)基于煤矿地质、钻探、测量等数据,研究地质灾害源定量精细表征和大数据智能识别技术,研究煤矿地质灾害因素敏感性属性信息聚合技术及高分辨率定量精细表征方法,实现地质灾害源多场多属性数据的时空融合和地质灾害的智能识别;(4)研究构建矿井地质灾害透明化立体全息地图及自动更新平台,构建多尺度三维地质模型,精细刻画井巷结构和灾害源形态的空间分布;研究构建地质灾害透明化立体全息地图,在采掘窗口内进行全息地图的实时更新与动态反馈,实现透明化全息地图构建、自动更新、专业分析和地质灾害源预警功能。
Abstract:The realization of green, intelligent and safe mining of coal and the development strategy of “double carbon target” urgently needs to solve the major technical problems of transparent detection and geological safety guarantee of hidden hazards in coal mines. Limited by the development level of geological exploration theory, technology and equipment, the transparent geological support technology of coal mine geological disaster hidden dangers is still relatively lagging behind, and the intelligence, precision, timeliness and sharing of detection technology and equipment cannot meet the needs of green, intelligent and safe mining. Since 1990s, the continuous development of technologies such as high-resolution three-dimensional seismic exploration on the coal mine surface has greatly improved the accuracy(up to 3 m)of accurately describing complex geological structures in coal mines and predicting hidden hazards in coal mines. However, these achievements can only partially meet the geological information needs of coal mining, and further high-precision detection needs to be solved through underground geophysical exploration. In addition, the 3D geological model of coal mine established based on the ground exploration and drilling results is not a transparent working face in the true sense, and it is difficult to meet the needs of precision and even precision for remote unmanned control of intelligent coal mining. To achieve the goal of transparency of hidden geological hazards in coal mines, the author proposes to focus on the following four research aspects:(1) Focus on the comprehensive response mechanism of multi-geophysical fields of geological hazards sources in coal mines, develop the technology and equipment of surface exploration and underground detection, study the intelligent identification and dynamic inversion technology of multi-physical fields of geological hazards sources in coal mines, and achieve the accuracy of all-factor geological hazards identification;(2) Research and development of multi-field fine monitoring technology and equipment for mine geological disaster hazards to achieve transparent real-time analysis and timely feedback of mine geological disaster elements;(3) Based on coal mine geology, drilling, surveying and other data, study the quantitative and fine characterization of geological disaster sources and big data intelligent identification technology, research coal mine geological disaster factor sensitivity attribute information aggregation technology and high-resolution quantitative and fine characterization method, to achieve the spatio-temporal fusion of multi-field and multi-attribute data of geological disaster sources and intelligent identification of geological disasters;(4) Study the construction of transparent stereoscopic holographic map and automatic update platform of mine geological hazards, construct multi-scale three-dimensional geological model, and accurately depict the spatial distribution of shaft structure and disaster source form; Research and construction of transparent three-dimensional holographic map of geological disasters, real-time update and dynamic feedback of holographic map in the mining window, and realize the functions of transparent holographic map construction, automatic update, professional analysis and geological disaster source warning.
[1] 葛世荣,标准引领推动矿山智能化建设[N].中国矿业报,2023-9.5(4).
[2] 彭苏萍.我国煤矿安全高效开采地质保障系统研究现状及展望[J].煤炭学报,2020,45(7):2331-2345.PENG Suping.Current status and prospects of research on geological assurance system for coal mine safeand high efficient mining[J],Journal of China Coal Society,2020,45(7):2331-2345.
[3] RAMOS A C B,DAVIS T L.3-D AVO analysis and modeling applied to fracture detection in coalbed methane reservoirs[J].Geophysics,1997,62(6):1683-1695.
[4] 李冬,彭苏萍,杜文凤,等.煤层瓦斯突出危险区综合预测方法[J].煤炭学报,2018,43(2):466-472.LI Dong,PENG Suping,DU Wenfeng,et al.Comprehensive prediction method of coal seam gas outburst danger zone[J].Journal of China Coal Society,2018,43(2):466-472.
[5] LIN P,ZHAO J T,PENG S P.Low-rank diffraction separation using an improved MSSA algorithm[J].Acta Geophysica,2021,69(5):1651-1665.
[6] LI C J,PENG S P,CUI X Q,et al.3-D pre-stack diffraction separation by extending the PWD method with parametrized local slope[J].Geophysical Journal International,2023,232(2):750-763.
[7] 彭苏萍,高云峰,杨瑞召,等.AVO探测煤层瓦斯富集的理论探讨和初步实践——以淮南煤田为例[J].地球物理学报,2005,48(6):262-273.PENG Suping,GAO Yunfeng,YANG Ruizhao,et al.Theory and application of AVO for detection of coalbed methane-A case from theHuainan coalfield[J].Chinese Journal of Geophysics,2005,48(6):262-273.
[8] 彭苏萍,杜文凤,赵伟,等.煤田三维地震综合解释技术在复杂地质条件下的应用[J].岩石力学与工程学报,2008,27(S1):2760-2765.PENG Suping,DU Wenfeng,ZHAO Wei,et al.3D coalfield seismic integrated interpretation technique in complex geological condition[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(S1):2760-2765.
[9] 彭苏萍,袁亮.淮南煤矿三维地震勘探技术应用与效果[J].安徽地质,2011,21(2):95-99.PENG Suping,YUAN Liang.Research and achievements of three dimensional seismic prospectingtechnologies in huainan coal mines[J].Geology of Anhui,2011,21(2):95-99.
[10] 岳建华,杨海燕,冉华赓.矿井电法勘探研究现状与发展趋势[J].煤田地质与勘探,2023,51(1):259-276.YUE Jianhua,YANG Haiyan,RAN Huageng.Research status and development trend of mine electrical prospecting[J].Coal Geology & Exploration,2023,51(1):259-276.
[11] YUE J H,ZHANG H R,YANG H Y,et al.Electrical prospecting methods for advance detection progress,problems,and prospects in Chinese coal mine [J].Ieee Geoscience and Remote Sensing Magazine,2019,7(3):94-106.
[12] 张艳龙,吴燕清,邓刘洋,等.定源瞬变电磁数据的时频转换反演技术研究[J].矿业安全与环保,2021,48(5):43-49.ZHANG Yanlong,WU Yanqing,DENG Liuyang,et al.Research on time-frequency conversion in inversion of fixed source transientelectromagnetic data[J].Mining Safety & Environmental Protection,2021,48(5):43-49.
[13] 苗彬,姜志海,刘树才.矿井地面-巷道瞬变电磁探测系统设计及应用[J].煤炭科学技术,2016,44(12):148-153.MIAO Bin,JIANG Zhihai,LIU Shucai.Design and application of transient electromagnetic detection system on mine surfaceground and in underground mine roadway[J].Coal Science and Technology,2016,44(12):148-153.
[14] 刘树才,姜志海,赵云.地面-坑道瞬变电磁灾害水源精细探查技术研究[C]//中国国际地球电磁学术讨论会,2011.LIU Shucai,JIANG Zhihai,ZHAO Yun.The ground-tunnel TEM precise exploration technology in water disaster[C]//The 10th China International Geo-Electromagnetic Workshop,2011.
[15] 刘瑞军.多层采空区地面—巷道瞬变电磁探测响应特征研究[D].徐州:中国矿业大学,2017.LIU Ruijun.Research on response characteristic of ground-tunnel transient electromagnetic method used in detecting multilayer goaf[D].Xuzhou:China University of Mining and Technology,2017.
[16] 李术才,李凯,翟明华,等.矿井地面-井下电性源瞬变电磁探测响应规律分析[J].煤炭学报,2016,41(8):2024-2032.LI Shucai,LI Kai,ZHAI Minghua,et al.Analysis of grounded Transient Electromagnetic with surface-tunnel configuration in mining[J].Journal of China Coal Society,2016,41(8):2024-2032.
[17] 朱国维,邸兵叶,马文波,等.深部矿井工作面地质条件及其地球物理勘探技术[J].煤炭工程,2008,40(3):66-68.ZHU Guowei,DI Bingye,MA Wenbo,et al.Geological conditions and other geophysical survey technologies of coal mining face in deepmine[J].Coal Engineering,2008,40(3):66-68.
[18] 朱国维,王怀秀,韩堂惠,等.地层条件下煤层顶、底板声波速度与反射特征[J].煤炭学报,2008,33(12):1391-1396.ZHU Guowei,WANG Huaixiu,HAN Tanghui,et al.Reflection characteristics and acoustic velocity of coal roof and floor under formationconditions[J].Journal of China Coal Society,2008,33(12):1391-1396.
[19] 王怀秀,刘红梅,朱国维.新型本安分布式矿井三分量地震仪的研制[J].电子测量与仪器学报,2008,22(S2):347-352.WANG Huaixiu,LIU Hongmei,ZHU Guowei.Development of new essential safety distributed mine 3-component seismograph[J].Journal of Electronic Measurement and Instrumentation,2008,22(S2):347-352.
[20] 王怀秀,仇帅,朱国维,等.基于MEMS与LwIP的煤矿三分量地震数据采集系统[J].煤田地质与勘探,2021,49(4):8-14.WANG Huaixiu,QlU Shuai,ZHU Guowei,et al.Three-component seismic data acquisition system of coal mine based on MEMS and LwlP[J].Coal Geology & Exploration,2021,49(4):8-14.
[21] 刘盛东,章俊,李纯阳,等.矿井多波多分量地震方法与试验[J].煤炭学报,2019,44(1):271-277.LIU Shengdong,ZHANG Jun,LI Chunyang,et al.Method and test of mine seismic multi-wave and multi-component[J] Journal of China Coal Society,2019,44(1):271-277.
[22] 王勃,曾林峰,张衍,等.煤矿井下全空间地震波时频域极化分析及其试验研究[J].煤炭学报,2022,47(8):2978-2984.WANG Bo,ZENG Linfeng,ZHANG Yan,et al.Time-frequency domain polarization analysis of seismic waves in the whole space ofmine and its experimental study[J].Journal of China Coal Society,2022,47(8):2978-2984.
[23] 姬广忠,程建远,朱培民,等.煤矿井下槽波三维数值模拟及频散分析[J].地球物理学报,2012,55(2):645-654.JI Guangzhong,CHENG Jianyuan,ZHU Peiming,et al.3-D numerical simulation and dispersion analysis of in-seam wave in underground coal mine[J].Chinese Journal of Geophysics,2012,55(2):645-654.
[24] 程建远,江浩,姬广忠,等.基于节点式地震仪的煤矿井下槽波地震勘探技术[J].煤炭科学技术,2015,43(2):25-28.CHENG Jianyuan,JIANG Hao,JI Guangzhong,et al.Channel wave seismic exploration technology based on node digital seismograph inunderground mine[J].Coal Science and Technology,2015,43(2):25-28.
[25] 王元杰,路洋波.基于井上下微震联合监测技术的矿井防治水应用研究[J].煤炭工程,2020,52(11):83-88.WANG Yuanjie,LU Yangbo.Application of mine water prevention and control based on surface and underground jointmicroseism monitoring[J].Coal Engineering,2020,52(11):83-88.
[26] 李文健.微震监测技术在冲击地压矿井的应用[J].中国地质灾害与防治学报,2015,26(4):116-120.LI Weniian.Application of microseism monitoring technology in rock burst coal mine[J].The Chinese Journal of Geological Hazard and Control,2015,26(4):116-120.
[27] 赵钟南,许洋铖,吴燕清,等.井下瞬变电磁仪硬件对致灾水体分辨能力的评估[J].煤田地质与勘探,2021,49(4):40-48.ZHAO Zhongnan,XU Yangcheng,WU Yanqing,et al.Evaluation on the resolution ability of underground transient electromagnetic instrument todisaster-causing water bodies[J].Coal Geology & Exploration,2021,49(4):40-48.
[28] 胡运兵.矿井高密度电阻率法的观测参数研究[D].北京:煤炭科学研究总院,2006.HU Yunbing.The research on observation parameter of mine high density resistivity method[D].Beijing:Chinese Institute of Coal Science,2006.
[29] 刘盛东,吴荣新,张平松,等.三维并行电法勘探技术与矿井水害探查[J].煤炭学报,2009,34(7):927-932.LIU Shengdong,WU Rongxin,ZHANG Pingsong,et al.Three-dimensional parallel electric surveying and its applications in water disasterexploration in coal mines[J].Journal of China Coal Society,2009,34(7):927-932.
[30] 张平松,刘盛东,李培根,等.矿井瞬变电磁探测技术系统与应用[J].地球物理学进展,2011,26(3):1107-1114.ZHANG Pingsong,LIU Shengdong,LI Peigen,et al.Mine transient electromagnetic technology system and its application[J].Progress in Geophysics,2011,26(3):1107-1114.
[31] 张平松,胡雄武.矿井巷道掘进电磁法超前探测技术研究现状[J].煤炭科学技术,2015,43(1):112-115,119.ZHANG Pingsong,HU Xiongwu.Research status on technology of advanced detection by electromagnetic methods in minelaneway[J].Coal Science and Technology,2015,43(1):112-115,119.
[32] 梁庆华,吴燕清,李云波,等.无线电波探测瓦斯富集区理论与方法[J].煤炭学报,2017,42(S1):148-153.LIANG Qinghua,WU Yanqing,LI Yunbo,et al.Theory and method of coal seam gas enrichment area based on radio wave perspectivedetection[J].Journal of China Coal Society,2017,42(S1):148-153.
[33] 梁庆华,吴燕清,宋劲.无线电波坑道透视探测的定性分析及其应用[J].重庆大学学报,2010,33(11):113-118.LIANG Qinghua,WU Yanqing,SONG Jin.Study on the qualitative analysis and application of radio wave tunnel perspective[J].Journal of Chongqing University,2010,33(11):113-118.
[34] XU X L,PENG S P,YANG F.Development of a ground penetra-ting radar system for large-depth disaster detection in coal mine[J].Journal of Applied Geophysics,2018,158:41-47.
[35] 许献磊,杨峰,夏云海,等.矿井超深探测地质雷达天线的开发及应用[J].煤炭科学技术,2016,44(4):124-129.XU Xianlei,YANG Feng,XIA Yunhai,et al.Development and application of mine geological radar antenna for mine ultra-deepdetection[J].Coal Science and Technology,2016,44(4):124-129.
[36] 孙明浩,许献磊,张迪.矿井雷达波走时层析成像精度的影响分析及参数优化研究[J].矿业科学学报,2022,7(1):134-142.SUN Minghao,XU Xianlei,ZHANG Di.Research on the influence analysis of radar traveling time tomography in mine andparameter optimization[J].Journal of Mining Science and Technology,2022,7(1):134-142.
[37] 王保利,程建远,金丹,等.煤矿井下随掘地震震源特征及探测性能研究[J].煤田地质与勘探,2022,50(1):10-19.WANG Baoli,CHENG Jianyuan,JIN Dan,et al.Characteristics and detection performance of the source of seismic while excavating inunderground coal mines[J].Coal Geology & Exploration,2022,50(1):10-19.
[38] 王季,覃思,陆斌,等.基于掘进机随掘震源的巷道侧前方断层成像技术[J].煤炭科学技术,2021,49(2):232-237.WANG Ji,QIN Si,LU Bin,et al.Tomographic imaging technology of front side of roadway based on excavation source ofroadheader[J].Coal Science and Technology,2021,49(2):232-237.
[39] 卢文庭.掘进机电法随掘连续超前探测及成像方法研究[D].徐州:中国矿业大学,2023.LU Wenting.Research on continuous advance detectionand imaging methods of roadheader withexcavation based on electrical method[D].Xuzhou:China University of Mining and Technology,2023.
[40] 袁亮,张平松.煤矿透明地质模型动态重构的关键技术与路径思考[J].煤炭学报,2023,48(1):1-14.YUAN Liang,ZHANG Pingsong.Key technology and path thinking of dynamic reconstruction of mine transparentgeological model[J].Journal of China Coal Society,2023,48(1):1-14.
[41] 关奇,吴国庆,王保利,等.煤矿井下随采随掘地震监测智能地质保障系统[J].智能矿山,2022,3(11):70-75.GUAN Qi,WU Guoqing,WANG Baoli,et al.Intelligent geological support system for seismic monitoring along with mining in coal mine[J].Journal of IntelIigent Mine,2022,3(11):70-75.
[42] 许献磊,彭苏萍,马正,等.基于空气耦合雷达的矿井煤岩界面随采动态探测原理及关键技术[J].煤炭学报,2022,47(8):2961-2977.XU Xianlei,PENG Suping,MA Zheng,et al.Principle and key technology of dynamic detection of coal-rock interface in coal minebased on air-coupled radar[J].Journal of China Coal Society,2022,47(8):2961-2977.
[43] MALLET J L.Discrete smooth interpolation in geometric modelling[J].Computer-Aided Design,1992,24(4):178-191.
[44] 陈爱兵,秦德先,张学书,等.基于MICROMINE矿床三维立体模型的应用[J].地质与勘探,2004,40(5):77-80.CHEN Aibin,QIN Dexian,ZHANG Xueshu,et al.3D model for deposit based on micromine technology[J].Geology and Exploration,2004,40(5):77-80.
[45] 牛露佳,王双威,曾义文,等.基于规则网格的复杂断层网络处理与建模[J].地质论评,2023,69(5):1980-1990.NIU Lujia,WANG Shuangwei,ZENG Yiwen,et al.Processing and modeling of complex fault networks based on regular grid[J].Geological Review,2023,69(5):1980-1990.
[46] 闫晓东,王占刚.基于弹簧质点模型的板块构造恢复方法[C]//2020年中国地球科学联合学术年会,中国地球物理学会、中国地震学会、全国岩石学与地球动力学研讨会组委会、中国地质学会构造地质学与地球动力学专业委员会、中国地质学会区域地质与成矿专业委员会、国家自然科学基金委员会地球科学部,重庆,2020:3.YAN Xiaodong,WANG Zhangang.Plate tectonic recovery method based on spring particle model[C]//2020 Annual Meeting of chinese Geoscience Union(CGU),Chongqing,2020:3.
[47] 王占刚,屈红刚,王想红.基于25交模型实现带洞面域拓扑关系描述模型间的转换[J].测绘学报,2018,47(9):1270-1279.WANG Zhangang,QU Honggang,WANG Xianghong.Transformations among topological relation representation models foiregions with holes using the 25-intersection method [J].Acta Geodaetica et Cartographica Sinica,2018,47(9):1270-1279.
[48] 贾会玲,李青元,屈红刚,等.三维地质模型数据Geo3DML向3DPDF格式转换[J].测绘科学,2017,42(5):154-159.JIA Huiling,LI Qingyuan,QU Honggang,et al.A format transformation method for three dimension geological model data from Geo3DML to 3DPDF[J].Science of Surveying and Mapping,2017,42(5):154-159.
[49] 王占刚,杜群乐,王想红.复杂区域对象拓扑关系分解与计算[J].测绘学报,2017,46(8):1047-1057.WANG Zhangang,DU Qunle,WANG Xianghong.Dividing and computing topological relations between complex regions[J].Acta Geodaetica et Cartographica Sinica,2017,46(8):1047-1057.
[50] 何俊强,杨钦.基于Cesium的震源机制解三维可视化方法[J].工程地球物理学报,2022,19(6):843-850.HE Junqiang,YANG Qin.The 3D visualization method of focal mechanism solution based on cesium[J].Chinese Journal of Engineering Geophysics,2022,19(6):843-850.
[51] 段忠祥,杨钦.显隐式几何模型混合运动边界追踪方法[J].电子技术与软件工程,2021(3):229-231.DUAN Zhongxiang,YANG Qin.Hybrid motion boundary tracking method for explicit and implicit geometric models[J].Electronic Technology & Software Engineering,2021(3):229-231.
[52] 雷鸣,钱世洋,金宇林,等.基于OpenGL的核心可视化交互功能实现[J].计算机与数字工程,2006(12):138-142.LEI Ming,QIAN Shiyang,JIN Yulin,et al.Core lmplementation of virtual interactive interface based on opengl[J].Computer & Digital Engineering,2006(12):138-142.
[53] 吴道政,毛善君,李鑫超.基于龙软GIS3.0的煤矿空间数据库架构设计[J].煤炭科学技术,2009,37(4):94-97.WU Daozheng,MAO Shanjun,LI Xinchao.Design on coal mine space database frame based on dragonsoft GIS3.0[J].Coal Science and Technology,2009,37(4):94-97.
[54] 于成水,尹红.山东蓝光为采矿业量身定做“数字矿山”[N].中国工业报,2009-12-23(A03).
[55] 左书豪,李吉刚,孟宪海,等.深时地球网格及其应用前景[C]//2022年中国地球科学联合学术年会,中国地球物理学会,2022:4.ZUO Shuhao,LI Jigang,MENG Xianhai,et al.Deep time earth grid and its application prospect[C]//2022 Annual Meeting of chinese Geoscience Union(CGU),2022:4.
基本信息:
DOI:
中图分类号:TD163.1;P694
引用信息:
[1]许献磊,马正,陈令洲.煤矿地质灾害隐患透明化探测技术进展与思考[J].绿色矿山,2023,1(01):56-69.
基金信息:
国家重点研发计划资助项目(2023YFC3008902); 国家自然科学基金资助项目(52174155)